Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.

Identifieur interne : 000163 ( Main/Exploration ); précédent : 000162; suivant : 000164

Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.

Auteurs : Karim Dawkins [États-Unis] ; Nwadiuto Esiobu [États-Unis]

Source :

RBID : pubmed:27252726

Abstract

Invasive plant species constitute a major ecological and economic problem worldwide, often distorting trophic levels and ecosystem balance. Numerous studies implicate factors ranging from environmental plasticity, competition for nutrient and space, and allelopathy in the success of invasive species in general. The Brazilian Pepper tree (BP) was introduced to the United States in the 1800s and has since become a category one invasive plant in Florida. It has aggressively spread to about 3000 km(2) of terrestrial surface, fueled in part by the prevalence of the hybrid genotypes and environmental perturbations. It displays some of the well-established invasive mechanisms but there is a serious dearth of knowledge on the plant-microbe-soil interactions and whether the rhizobiome plays any roles in the displacement of native flora and the range expansion of BP. Several control measures, including chemical, mechanical, and biological antagonism have been used with limited success while restoration of natives in soils from which BP was removed has proved problematic partly due to a poorly understood phenomenon described as the "BP legacy effect." Emerging evidence suggests that allelopathy, selective recruitment of beneficial soil microbes, disruption of microbial community structure and alteration of nutrient cycling, exhibited by many other invasive plant species may also be involved in the case of BP. This brief review discusses the well-established BP invasion mechanisms and highlights the current understanding of the molecular, below-ground processes. It also points out the gaps in studies on the potential role of microbial interactions in the success of BP invasion. These hitherto poorly studied mechanisms could further explain the aggressive spread of BP and could potentially contribute significantly to effective control measures and enable appropriate strategies for restoring native plants. The review advocates for the use of cutting-edge techniques in advancing the plant microbiome science. Ultimately, comparing metagenomic analyses of the rhizobiome of invasive plants grown in native and non-native soils could lead to a better understanding of the microbial determinants of biotic resistance, potentially empowering environmental managers with some predictive power of future trends of plant invasion.

DOI: 10.3389/fpls.2016.00712
PubMed: 27252726
PubMed Central: PMC4878544


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.</title>
<author>
<name sortKey="Dawkins, Karim" sort="Dawkins, Karim" uniqKey="Dawkins K" first="Karim" last="Dawkins">Karim Dawkins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL</wicri:regionArea>
<wicri:noRegion>Davie FL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Esiobu, Nwadiuto" sort="Esiobu, Nwadiuto" uniqKey="Esiobu N" first="Nwadiuto" last="Esiobu">Nwadiuto Esiobu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL</wicri:regionArea>
<wicri:noRegion>Davie FL</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27252726</idno>
<idno type="pmid">27252726</idno>
<idno type="doi">10.3389/fpls.2016.00712</idno>
<idno type="pmc">PMC4878544</idno>
<idno type="wicri:Area/Main/Corpus">000156</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000156</idno>
<idno type="wicri:Area/Main/Curation">000156</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000156</idno>
<idno type="wicri:Area/Main/Exploration">000156</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.</title>
<author>
<name sortKey="Dawkins, Karim" sort="Dawkins, Karim" uniqKey="Dawkins K" first="Karim" last="Dawkins">Karim Dawkins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL</wicri:regionArea>
<wicri:noRegion>Davie FL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Esiobu, Nwadiuto" sort="Esiobu, Nwadiuto" uniqKey="Esiobu N" first="Nwadiuto" last="Esiobu">Nwadiuto Esiobu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL</wicri:regionArea>
<wicri:noRegion>Davie FL</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Invasive plant species constitute a major ecological and economic problem worldwide, often distorting trophic levels and ecosystem balance. Numerous studies implicate factors ranging from environmental plasticity, competition for nutrient and space, and allelopathy in the success of invasive species in general. The Brazilian Pepper tree (BP) was introduced to the United States in the 1800s and has since become a category one invasive plant in Florida. It has aggressively spread to about 3000 km(2) of terrestrial surface, fueled in part by the prevalence of the hybrid genotypes and environmental perturbations. It displays some of the well-established invasive mechanisms but there is a serious dearth of knowledge on the plant-microbe-soil interactions and whether the rhizobiome plays any roles in the displacement of native flora and the range expansion of BP. Several control measures, including chemical, mechanical, and biological antagonism have been used with limited success while restoration of natives in soils from which BP was removed has proved problematic partly due to a poorly understood phenomenon described as the "BP legacy effect." Emerging evidence suggests that allelopathy, selective recruitment of beneficial soil microbes, disruption of microbial community structure and alteration of nutrient cycling, exhibited by many other invasive plant species may also be involved in the case of BP. This brief review discusses the well-established BP invasion mechanisms and highlights the current understanding of the molecular, below-ground processes. It also points out the gaps in studies on the potential role of microbial interactions in the success of BP invasion. These hitherto poorly studied mechanisms could further explain the aggressive spread of BP and could potentially contribute significantly to effective control measures and enable appropriate strategies for restoring native plants. The review advocates for the use of cutting-edge techniques in advancing the plant microbiome science. Ultimately, comparing metagenomic analyses of the rhizobiome of invasive plants grown in native and non-native soils could lead to a better understanding of the microbial determinants of biotic resistance, potentially empowering environmental managers with some predictive power of future trends of plant invasion. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27252726</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.</ArticleTitle>
<Pagination>
<MedlinePgn>712</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00712</ELocationID>
<Abstract>
<AbstractText>Invasive plant species constitute a major ecological and economic problem worldwide, often distorting trophic levels and ecosystem balance. Numerous studies implicate factors ranging from environmental plasticity, competition for nutrient and space, and allelopathy in the success of invasive species in general. The Brazilian Pepper tree (BP) was introduced to the United States in the 1800s and has since become a category one invasive plant in Florida. It has aggressively spread to about 3000 km(2) of terrestrial surface, fueled in part by the prevalence of the hybrid genotypes and environmental perturbations. It displays some of the well-established invasive mechanisms but there is a serious dearth of knowledge on the plant-microbe-soil interactions and whether the rhizobiome plays any roles in the displacement of native flora and the range expansion of BP. Several control measures, including chemical, mechanical, and biological antagonism have been used with limited success while restoration of natives in soils from which BP was removed has proved problematic partly due to a poorly understood phenomenon described as the "BP legacy effect." Emerging evidence suggests that allelopathy, selective recruitment of beneficial soil microbes, disruption of microbial community structure and alteration of nutrient cycling, exhibited by many other invasive plant species may also be involved in the case of BP. This brief review discusses the well-established BP invasion mechanisms and highlights the current understanding of the molecular, below-ground processes. It also points out the gaps in studies on the potential role of microbial interactions in the success of BP invasion. These hitherto poorly studied mechanisms could further explain the aggressive spread of BP and could potentially contribute significantly to effective control measures and enable appropriate strategies for restoring native plants. The review advocates for the use of cutting-edge techniques in advancing the plant microbiome science. Ultimately, comparing metagenomic analyses of the rhizobiome of invasive plants grown in native and non-native soils could lead to a better understanding of the microbial determinants of biotic resistance, potentially empowering environmental managers with some predictive power of future trends of plant invasion. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dawkins</LastName>
<ForeName>Karim</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Esiobu</LastName>
<ForeName>Nwadiuto</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Microbial Biotech Lab, Department of Biological Sciences, Florida Atlantic University, Davie FL, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">allelopathy</Keyword>
<Keyword MajorTopicYN="N">biotic resistance</Keyword>
<Keyword MajorTopicYN="N">enemy release</Keyword>
<Keyword MajorTopicYN="N">mechanisms of invasion</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">plant invasion</Keyword>
<Keyword MajorTopicYN="N">rhizobiome</Keyword>
<Keyword MajorTopicYN="N">soil microbial community</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27252726</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00712</ArticleId>
<ArticleId IdType="pmc">PMC4878544</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 May 2;417(6884):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2003 Apr 22;270(1517):775-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Mol Mutagen. 2003;42(3):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14556225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):731-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Oct;14(12):3643-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16202086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):256-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2008 Oct 23;4(5):560-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):7899-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Sep;25(9):512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 24;5(8):e12380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Clin Microbiol Antimicrob. 2010 Oct 12;9:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20939907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1993 Apr;8(4):133-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jan;14(1):1-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21651688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):714-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22585095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2013 Mar;114(3):672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 15;288(7):4502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Odontol Scand. 2013 May-Jul;71(3-4):965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23294177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jul;7(7):1424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23511469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 16;4:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 30;4:165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Dec;7(12):2248-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23864127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1982 Jul;8(7):1011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Apr;66(8):2167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25908654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Nov;21(11):4128-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015;1(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27019743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Dec;133(4):441-448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28466178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Dawkins, Karim" sort="Dawkins, Karim" uniqKey="Dawkins K" first="Karim" last="Dawkins">Karim Dawkins</name>
</noRegion>
<name sortKey="Esiobu, Nwadiuto" sort="Esiobu, Nwadiuto" uniqKey="Esiobu N" first="Nwadiuto" last="Esiobu">Nwadiuto Esiobu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000163 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000163 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27252726
   |texte=   Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27252726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020